Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627456

RESUMO

Horses play an important role throughout the world, whether for work, culture, or leisure, providing an ever-growing significant contribution to the economy. The increase in importation and movement of horses, both nationally and internationally, has inevitably allowed for the global equine industry to grow. Subsequently, however, the potential for transmission of fatal equine bacterial diseases has also escalated, and devasting outbreaks continue to occur. To prevent such events, disease surveillance and diagnosis must be heightened throughout the industry. Current common, or "gold-standard" techniques, have shown to be inadequate at times, thus requiring newer technology to impede outbreaks. Loop-mediated isothermal amplification (LAMP) has proven to be a reliable, rapid, and accessible tool in both diagnostics and surveillance. This review will discuss equine bacterial diseases of biosecurity relevance and their current diagnostic approaches, as well as their respective LAMP assay developments. Additionally, we will provide insight regarding newer technology and advancements associated with this technique and their potential use for the outlined diseases.

2.
Vet Sci ; 9(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35202313

RESUMO

Fasciola hepatica is the causative agent of fasciolosis, a significant parasitic disease occurring worldwide. Despite ongoing efforts, there is still no vaccine to control liver fluke infections in livestock. Recently, it has been suggested that natural antibodies (NAbs) can amplify specific antibodies (SpAb) and have a direct killing effect, but it is unknown if this phenomenon occurs during parasitic helminth infection or targeted vaccination. NAbs are antibodies produced by the innate immune system, capable of binding antigens without prior exposure. This study explores the role of bovine NAbs, using the exogenous glycoprotein keyhole limpet hemocyanin (KLH), in response to F. hepatica infection and SpAb production after infection and vaccination. The cattle's NAbs were differently influenced by parasite infection and vaccination, with an increase in KLH-binding IgG and IgM levels after infection and reduced KLH-binding IgM levels following vaccination. Underlying NAbs reacting to KLH showed no correlations to the final fluke burdens after experimental infection or vaccination. However, NAbs reacting to whole-worm extract (WWE) prior to infection were positively correlated to increased fluke burdens within the infected bovine host. Furthermore, after infection, the specific IgG reacting to WWE was positively reflected by the underlying NAb IgG response. Following subcutaneous vaccination with F. hepatica native glutathione S-transferase (GST), there was a non-significant 33% reduction in fluke burden. Vaccinated animals with higher underlying NAbs had a higher induction of vaccine-induced SpAbs, with trends observed between KLH-binding IgM and anti-GST IgG and IgM. Our findings provide a platform to allow further investigation to determine if NAb levels could mirror fluke-SpAb production for exploitation in a combined selective breeding and vaccination program. Additionally, this work suggests that liver fluke could possibly evade the host's immune system by utilising surface-bound IgM NAbs.

3.
Vaccines (Basel) ; 9(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835144

RESUMO

Fasciolosis, caused by the liver flukes Fasciola hepatica and F. gigantica, is an economically important and globally distributed zoonotic disease. Liver fluke infections in livestock cause significant losses in production and are of particular concern to regions where drug resistance is emerging. Antigens of the F. hepatica surface tegument represent promising vaccine candidates for controlling this disease. Tetraspanins are integral tegumental antigens that have shown partial protection as vaccine candidates against other trematode species. The Escherichia coli heat-labile enterotoxin's B subunit (LTB) is a potent mucosal adjuvant capable of inducing an immune response to fused antigens. This study investigates the potential of F. hepatica tetraspanin 2 extracellular loop 2 (rFhTSP2) as a protective vaccine antigen and determines if fusion of FhTSP2 to LTB can enhance protection in cattle. Cattle were immunised subcutaneously with rFhTSP2 mixed in the Freund's adjuvant and intranasally with rLTB-FhTSP2 in saline, accounting for equal molar ratios of tetraspanin in both groups. Vaccination with rFhTSP2 stimulated a strong specific serum IgG response, whereas there was no significant serum IgG response following rLTB-FhTSP2 intranasal vaccination. There was no substantial antigen specific serum IgA generated in all groups across the trial. Contrastingly, after the fluke challenge, a rise in antigen specific saliva IgA was observed in both vaccination groups on Day 42, with the rLTB-FhTSP2 vaccination group showing significant mucosal IgA production at Day 84. However, neither vaccine group showed a significant reduction of fluke burden nor faecal egg output. These results suggest that intranasal vaccination with rLTB-FhTSP2 does elicit a humoral mucosal response but further work is needed to evaluate if mucosal delivery of liver fluke antigens fused to LTB is a viable vaccine strategy.

4.
Animals (Basel) ; 11(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207215

RESUMO

The disease fasciolosis is caused by the liver flukes Fasciola hepatica and F. gigantica, which infect a wide range of mammals and production livestock, including goats. These flatworm parasites are globally distributed and predicted to cost the livestock industry a now conservative USD 3 billion per year in treatment and lowered on-farm productivity. Infection poses a risk to animal welfare and results in lowered fertility rates and reduced production yields of meat, milk and wool. This zoonotic disease is estimated to infect over 600 million animals and up to 2.4 million humans. Current and future control is threatened with the global emergence of flukes resistant to anthelmintics. Drug resistance calls for immediate on-farm parasite management to ensure treatments are effective and re-infection rates are kept low, while a sustainable long-term control method, such as a vaccine, is being developed. Despite the recent expansion of the goat industry, particularly in developing countries, there are limited studies on goat-focused vaccine control studies and the effectiveness of drug treatments. There is a requirement to collate caprine-specific fasciolosis knowledge. This review will present the current status of liver fluke caprine infections and potential control methods for application in goat farming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...